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A STUDYOFNONLINEARLONGITUDINALDYNM_ICSTABILITY

By Murray Tobak and Walter E. Pearson

AmesResearch Center
Moffett Field, Calif.

SU_ARY

Principles from functional ana_sis are used as the framework for a
reformulation of the notions of aerodynamic indicial functions and superposi-
tion. An integral form for the aerodynamic pitchi_-moment coefficient is
derived which is free of dependenceon a iinearity assumption. Results are
applied to the stu_ of nonlinear longitudinal _namic stability. Implica-
tions of the results are discussed, especial_ in regard to the meaning of
experime_al determinations of nonlinear aero_namic damping derivatives.

II'_RODU_ION

The history of mathematical studies of the dynamic stability of aircraft
begins essentially with Bryan's "Stability in Aviation" (ref. i). It is a
tribute to its penetration that this analysis, published at the very begin-
ning of heavier-than-air flight itself, has remained the foundation for prac-
tically all subsequent studies of the subject. The assumption central to
Bryan's formulation is that the aerodynamic forces and momentsdeveloped at a
given instant depend only on the instantaneous values of the variables which
determine forces and momentsin a steady flow. Whenj in addition, a linear
dependenceof the forces and momentson these variables is assumed, the equa-
tions governing the motions of aircraft reduce to a set of linear ordinary
differential equations having constant coefficients. With the form of the
equations thus established, the study of stability becomessynonymouswith
stuQv of the coefficients. The nature and determination of these coeffi-
cients, the "stability derivatives," has been the central concern of experi-
menters and analysts alike through the ensuing years.

Later investigations into the transient behavior of the aerodynamic
forces and momentsin response to sudden changes in the flow around the air-
craft led researchers to recognize that the forces and momentsat an instant
were dependent not only on the instantaneous values of the flow variables but
also on their past values (cf. ref. 2 for a comprehensive summaryand bibliog-
raphy). The concept of transient aerodynamic force and momentresponses to
step changes in the flow variables, that is, of "indicial functions," coupled
with the notion of superposition, led to a new formulation of the equations
of motion (ref. 3). In this formulation, which is exact in principle within
the assumption of linearity_ the equations of motion take the form of integro-
differential equations. As these generally are more difficult to treat than
the original ordinary differential equations, the new formulation has not



been widely adopted in practice. Its chief contribution has been to provide
a framework within which the deficiencies of the original formulation could
be appreciated and perhaps removed. This has been the case in the study of
aircraft stability, in virtue of the very low frequencies characteristic of
aircraft motions. Reduction of the complete equations to equations correct
to the first order in frequency restores the form of the original equations_
the latter now properly including terms accounting for the past within the
order of the approximation. In effect_ the more exact formulation provided
the basis on which this improvement could be made, and in addition, a means
of clarifying the natu_e of the added terms, terms owing their existence to
time-dependent phenomena(ref. 4).

While the original equations of motion, amendedas described_ heretofore
have been capable of reliably depicting the motions of aircraft_ there is
considerable evidence that they now fail to do so in a consistent way. The
cause of this failure has a clear connection with the remaining assumption
basic to the original formulation, namely, that of linearity. In response to
the demandfor flight at extreme altitudes and speeds, the aircraft's evolu-
tion has tended to merge with that of the projectile; generally having only
marginal stability and operating under extreme flight conditions_ such vehi-
cles often undergo motions of large amplitude. Over the ranges of these
large-amplitude motions, it is no longer an adequate approximation to repre-
sent the aerodynamic forces and momentsas linear functions of the flow vari-
ables. It has becomeapparent_ then_ that a reformulation of the aerodynamic
forces and momentsis again in order, now free of the assumption of linearity.
This reformulation should be expected to be a generalization of the exact
linear formulation mentioned previously. Hence_it is reasonable to antici-
pate that a new formulation of the aerodynamic forces and momentsshould
introduce integral forms which are essentially generalizations of the notion
of superposition. The term integral forms is suggestive of the mathematical
theory of functionals (ref. 5), and, indeed_ this theory is found to be of
sufficient breadth to provide the framework for the desired reformulation.

In this report, fundamental principles of functional analysis are used
to construct a framework within which the indicial function can be reformu-
lated as a nonlinear functional; the result is a new definition for the indi-
cial function which does not depend on a linearity assumption. This defini-
tion leads naturally to the derivation of integral forms for the aerodynamic
forces and momentswhich are the anticipated generalizations of the notion of
superposition.

Although in principle the analysis can be extended to more general
problems, for simplicity it is restricted here to the problem of longitudinal
motion alone. Even for this restricted problem, the results no doubt are too
complex to be of immediate practicability; however, just as was the case for
the exact linear formulation, it is found possible to reduce the results to
simpler morepracticable forms in virtue of the low frequencies characteris-
tic of aircraft motions. Implications of the results are discussed_ espe-
cially in regard to the meaning of experimental determinations of aerodynamic
damping derivatives.
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lift

lift coefficient, q° S

pitching-moment coefficient_ pitching moment
qoS_

normal force
normal-force coefficient_

qoS

indicial pitching-moment response measured at t per

unit step change in _ occurring at T, with q held

fixed at q(T)

indicial pitching-moment response measured at t per

unit step change in q occurring at T, with _ held

fixed at _(T)

base of natural logarithms

functional notation: value at _ = t of a function

F(t) which is dependent on all the values taken by the

two argument functions u(_),v(_) over the interval

0S_&t

moment of inertia about axis of pitch

wZ

reduced frequency_ _Jo

characteristic length _Z

dimensionless pitching-velocity parameter, _Jo

i
dynamic pressure, _ poVo a

characteristic area

distance traveled along the flight path

time

time required following an instantaneous change in

angle of attack or pitching velocity for the indicial

pitching moment to attain steady state

flight speed (fig. i)

Cartesian coordinate system with origin at aircraft

center of gravity (fig. i)

angle of attack (fig. i)

mean angle of attack (fig. 12)

oscillation amplitude (fig. 12)

angle of pitch (fig. i)



running variable in time

PO

C a

I-

atmospheric density

Vota

number of characteristic lengths traveled in time ta,

value of time _ at which step change in _ or q occurs

Vot

number of characteristic lengths traveled in time t_ Z

circular frequency

d_ d2_

a
dt

When _, _, and q are used as subscripts with a pitching-moment coefficient_

a dimensionless partial derivative is indicated; thus

_C m _C m _C m

C_ - _ , C_ = _(_/Vo) , Cmq =_--_-

Conventional use of the mathematical symbols 0 and c is made. The notation

xaA is shorthand for "x is an element of the set A;" the notation y =O(x)

is shorthand for "y is of the order of x. 't Open and closed intervals are

indicated by the symbols ( ) and [ ], respectively. The symbol ( ] means that

the interval is open on the left and closed on the right.

GET_ERAL CONSIDERATIONS

Definition of Coordinates

In the study to follow_ the aircraft is considered to be in level steady

flight prior to time zero; at time zero it begins a strictly longitudinal

maneuver inwhich the altitude changes are sufficiently small that the atmos-

pheric density along the flight path remains essentially constant. It is

further specified that the aircraft's velocity along the flight path remain

constant. Hence_ dynamic pressure and _ch number_ as measured along the

flight path, also remain fixed throughout the motion.

It is convenient to define an orthogonal coordinate system which follows

the path of the aircraft's center of gravity_ and, to this end, the origin of

coordinates is attached to the center of gravity. With the analysis

restricted to longitudinal motions only_ the origin never departs from a ver-

tical plane; its movement in the plane is defined by the velocity Vo, a



vector of fixed magnitude. As shownin
figure i, the positive branch of the x
axis is alined with the direction of
Vo; the y axis_ perpendicular to the
aircraft's vertical plane of symmetry_
is coincident with the axis of rotation;
the z axis lies in the vertical plane,
positive downward.

Figure i also introduces the
angles _ and 0_ which serve to define
the aircraft's maneuver in the vertical

plane. Angle of attack _ is defined

Figure i.- Definition of coordinates.

as the angle between the chord plane of the main lifting surface and the xy

plane; it is shown as positive in figure i. Angle of pitch e is the angle

between the same chord plane and the horizontal plane (an arbitrary reference.

With Vo constant_ the translatory and angular motions of the aircraft are
defined with respect to any system of coordinates when _ and 8 are known.

In figure 2_ two motions having the same flight path are shown in order to

/ F;ight path

/ /
/ %,

X

(a) Angle of pitch = e, angle

of attack = 0.

/

/

/Flight path
/.

/ N
/ X

\
\

(b) Angle of pitch = 0, angle

of attack = _.

Figure 2.- Maneuvers corresponding to purely (a) angle of pitch and (b) angle-of-att'ack

variations.

illustrate the difference between a maneuver which involves a constant angle

of attack with a varying angle of pitch and one which involves a constant

angle of pitch with a varying angle of attack.

Now consider a maneuver involving

simultaneous arbitrary variations of

and @. In response to the maneuver,

aerodynamic forces and moments are

developed which depend on flow condi-

tions at the surface of the aircraft.

This dependence is characteristically

determined by the nature of the flow

velocities which impinge on the surface.

Consider in particular the instantaneous

component of flow velocity normal to the

chord plane of the main lifting surface.

As shown in figure 3_ it consists of two

/_- Normal velocit'y V0 sin a

due to angle of attack a

\
\

Normal velocity gt: due to

angular velocity _

Figure 3.- Flow conditions normal to the wing

chord plane.



parts, a uniform distribution of velocity V o sin _ due to the instantaneous

angle of attack _, and a distribution of velocity _ linearly dependent on

chordwise distance from the axis of rotation. It will be noted that the lat-

ter component is due to the angular velocity e, and hence it is more appro-

priate to designate e rather than e itself as one of the flow variables
on which the forces and moments depend. For this purpose, the dimensionless

parameter q is introduced, where q = @Z/Vo, Z being a characteristic

length. Then, with Vo constant, it may be said that the aero_;namic forces

and moments depend on the variables _ and q. At a given instant_ however,

they depend not only on the instantaneous values of _ and q but on all the

past values of these variables. This is demonstrated in the following section.

Linear Aerodynamic Pitching-Moment Response

It is intended to demonstrate that the instantaneous values of

aerodynamic force and moment are indeed dependent on the whole past of _ and

q. As this can be clearly shorn within the framework of the exact linear

formulation, a summary description of this formulation will serve both as

demonstration and as brief review of the notion of aerodynamic indicial

functions and of superposition.

Let the aircraft begin a maneuver at time zero involving arbitrary

variations in _ and q, and consider the aerodynamic pitching-moment response

to the angle-of-attack variation, l As shown in figure 4, the angle-of-attack

variation may be broken into a large

a(T)

fl
_f ll//l////////

I

r t

Figure 4.- Superposition of incremental responses.

number of small step changes. In

response to a step change in _ at

time T, there is an incremental change

in pitching moment, AC m] it is measured

at a fixed time t subsequent to T.

The assumption of linearity is now

invoked, which, in the context of this

report, has the following meaning:

ACm is said to be independent of _T),

q(T), and the past values of these

variables. This enables one to write

Z_Cm (t - T)fkz. The
AC m in the form

form implies that _f_Cm/Zk_ is deriv-

able from a linear differential equa-

tion. That zlCm/Dm depends only on

elapsed time t - T, rather than on t

and T separately, implies in addition that the coefficients of the differen-

tial equation are independent of time. The following distinction should be

1Hereafter in this report_ for brevity, attention will be focused solely

on the aerodynamic pitching moment. All that is said, however, will hold as

well for the aerodynamic lift or normal force merely on the substitution of

CL or CN for Cm.
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carefully noted: The significance of the linearity assumption does not lie in

the fact that ACm is said to be linearly dependent on Zk_ for this can

always be asserted whenever _ is so sm_ll that terms of 0((f_)s) can be

neglected. The significance of the assumption lies in the fact that the

ratio SCm/_ is said to be independent of _ (and q). Thus, no matter how

large the value of _ at the origin of the step_ the response function

J_Cm/D_ is said to be the sam____efunction_ dependent only on elapsed time t - T.

The limit of this function as Zk_ approaches zero

, AC m

lim _-- (t - T) : Cm_(t - T)
_-_o

(l)

is called the indicial pitching-moment response per unit step change in _.

Every step beginning at a value of T less than t has a corresponding

incremental indicial response which contributes to the pitching moment at time

t. The summation of these incremental responses to the steps which occur over

the range of T from zero to t then gives the pitching moment at time t

due to the variation in _. As the indicial response depends only on the time

difference t - T; in the limit the summation takes the form of the familiar

convolution integral. The contribution to the total pitching moment due to

the variation in q is obtained simiiarly_ on introduction of the function

Cmq(t - T)_ the indicial pitching-moment response per unit step change in q.

The sum of the two contributions and the initial value of Cm then gives the

total pitching moment at time t

d

Cm(t) = Cm(0) + _ot Cruet(t - T) _d _(T)dT + yot Cmq(t - T) _ q(T)dT

(2)

For constant V o and within the assumption of linearity_ equation (2) is

exact. As all values of _ and q figure within the limits of the integrals_

the equation confirms the assertion that Cm at time t depends on the whole

past of _ and q.

It is desired to derive an integral form for Cm(t)_ analogous to

equation (2), free of the assumption of linearity. This form must of course
include the linear form as a special case_ and therefore those features of

the linear form which are independent of the assumption of linearity must be

retained. Accordingly_ the problem can be stated in this general way: For a

motion at constant V o beginning at time zero and involving arbitrary contin-

uous variations in _ and q_ find an integral form for Cm at time t which

is functionally dependent on _ and q and on all the values taken by _ and

q within the time interval zero to t. Stated in this way, the description

of Cm(t ) corresponds mathematically to Volterra's description of a functional

(ref. 5). If the notation of reference 5 is adopted, the assertion that

Cm(t ) is a functional is indicated thus,

Cm(t) = G[_(! 'q(!l
(3)

7



where it is understood that _ is a running variable in time_ ranging over

the interval zero to t. The attractive feature of the theory of functional

analysis is that_ in its most general form, it does not rest on an assumption

of linearity. Hence, an appeal to the general theory may open the way to the

desired formulation. As the theory is relatively unfamiliar to aerodynami-

cists, those elements of it relevant to the present problem are reviewed

briefly in the following section.

FUNDAmeNTALS OF FUNCTIONAL ANALYSIS

Basic Concepts and Notation

The mathematical concept of a functional is a generalization of the

familiar notion of a function. A brief review of this notion will provide a
means of introducing functionals.

When y is a function of a variable x in an interval [a_b]_ the usual
notation is

y = f(x) _ a _ x _ b

It is understood that for each x in the interval_ the function, f, assigns
a number, f(x), to y. Thus, a function assigns a number to each member of

a collection of points] this collection need not be a closed interval_ but can

be an arbitrary set. Whatever its nature, the collection of points for which
the function is defined is called its domain.

A functional also assigns a number to each member of a collection_ but

the domain of a functional is a collection of functions instead of a set of

points. That is_ given a collection of functions of x which are all defined

in some interval [a,b]_ the functional assigns a number to each member of the

collection. If a functional F assigns a number z to a function g(x) from
the collection, it is denoted by

[+]z = Fg

b

The end points a are frequently omitted from this notation because the

interval over which the functions of the collection are being considered is

usually defined a _. The common notation is

z = Fig(x)]

where it is understood that the number z depends on all those ordinates

g(x) which correspond to abscissas, x, contained in an interval previously

defined. This tacit understanding tends to obscure the fact that a functional

may be looked upon as a function of "several" variables. It is, in fact_
instructive to consider a functional as a function with an entire continuum of

independent variables.

8



The definite integral is a familiar exampleof a functional. As one
example of a collection of functions_ consider those functions which are con-
tinuous in the interval 0 _ x _ i. Let the collection be called Col and
let g(x) be any memberof this collection. Then the definite integral

Jo g(x)ax

exists and is a fixed number. It is therefore possible to define the func-

tional F with domain Coi by the relation

F[g(x)] = _ g(x)_

The functional F assigns a number to every g(x) in the collection Com'

Since this number is the area under the graph of g(x), it is quite clear that

the number assigned by F depends on the continuum of values taken on by

g(x) in the interval. This particular functional is also an example of a

linear functional which will now be defined.

The domain of a functional is usually closed under the operations of

addition of functions and multiplication by constants. That is_ when _(x)

and _(x) are functions in the domain_ then so is the function

_(_) : cm(x) + k_(x)

where c and k are any constants. The domain Col has this closure property.

if _(x) and _(x) are functions in Com , they are continuous in the interval_

[0,i], and it follows immediately that the function Ic_(x) + k_(x)l is also

continuous in this interval. Hence_ it is a function in the collection Com.

(It should be understood that this continuity condition applies merely to the

collection Col being considered; in general_ continuity is not a requisite

for the functions of a domain.)

A functional_ G_ is said to be a linear functional if

G[cm(x) + k_(x)] = co[m(_)] + ka[_(x)]

for every pair of functions _(x) and T(x) in its domain, and arbitrary
constants c and k.

The elementary properties of an integral make the functional

F[g(x)] = _j g(x)_

a linear functional. This can be seen from its definition_ F[g(x)] = _j g(x)dx
so that

g f= c m(x)a= + k _(x)_
0

= cF[_(x)] + kF[9(x)]

9



Derivative of a Functional

The analogy between the derivative of a functional and the ordinary

derivative of a function is quite direct, and an examination of the ordinary

derivative reveals much of the nature of the derivative of a functional.

Initially, the derivative of a function f(x) is defined at an arbitrary

but fixed point x o of its domain. An infinitesimal increment Ax is added

to Xo and the two numbers f(xo) and f(xo + Ax) are compared. The increment

Af corresponding to Ax is

: f(xo* - f(xo)

and the derivative of f(x) at xo is defined by

f'(Xo)= lim 
Ax

g3x-_o

If the limit f'(xo) exists for each point Xo in some part of the domain of

f(x), the derivative is itself a function, f'(x).

Analogously, the derivative of a functional F[g(x)] is first defined at

a "point," go(X), of its domain. An incremental function e_(x) is added to

go(X), and the corresponding increment f_F in the functional is given by

= F[go(x)+ F[go(x)]

As expected_ the derivative of the functional is then defined by means of a

limit, but the nature of this limit must be carefully stated.

go(X) +_(x)
\

\
go(X)

rn x I n

/

Figure 5.- Illustrationof go(X) + eQ_(x).

A point x I is chosen inside the

interval [a,b] where F operates on

the functions of its domain. The

arbitrary, but fixed, function go(X)

is given the increment e%o(x) in such

a way that 9(x) > 0 in a subinterval

(m,n) which contains the point xx,
but such that _(x)--0 outside (m, n), as

is shown in figure 5. The norm

I[e<p(x) IIof the incremental function
and the number b will be defined

here as

_(x_x

m<x<n

The symbol II c_(x) I[Xl _ 0 means that

both # _ 0 and (n - m) _ 0 simultane-

ously and, moreover, that (n - m) _ 0

in such a manner that the point x = xx

always lies within the interval (m,n).

i0

I



If lim gg_ exists_ this limit is defined to be the

II c_(x)IIxl-O I1c_(x)II
derivative of F with respect to go(X) at the point x = x I. The notation

adopted to express this is

(_o} x = F'[go(X);xz] =
=X I

F[go(X)+ c_(x)]-F[go(X)]
lira

-*o 1Ic_,(x) III1_(x)II xj_

It is clear that the limit depends on the function go(X) as well as on

the point xz. Therefore_ the derivative is both a functional and a function.

When the point xz is fixed and the derivative F'[g(x);xz] exists for each

g(x) in the domain of F, F'[g(x);xz] is a functional with the same domain as

F. When a particular function go(X) is chosen and the derivative exists for

each a < xz < b, F' is a function of xz in the interval (a,b).

It is interesting to note that if F[g(x)] is again defined to be a

definite integral

Fig(x)] = _j g(x)a_

then

F'[g(x);x_] =_l , c50

for every xl c [a,b] and every g(x) in the domain of F.

Derivatives of a Functional of Two Arguments

A functional may have more than one argument_ just as a function may

have more than one argument. When a functional has two arguments; its domain

consists of ordered pairs of functions_ as is indicated by the notation

z : F g ,h(x)
c

All the possible functions for the first member of the pair are defined in an

interval [a,b] and the functions for the second member are defined in an

interval Iced]. It may happen that [a,b] = [c,d]. Given any function from

the collection of first members and any function from the collection of second

members_ the functional F assigns a number z.

The integro-exponential function of order n, En(t) , provides a simple

example of a functional of two arguments. The function En(t ) is defined for

positive values of t by

En(t ) =_i _ -tx
x-ne dx

ii



That this is a functional of two arguments becomesevident if the set

tx -n } , n = i_ 2, 3, ' ; 1 < x <_

is taken for first member functions g(x), and the set

te -tx} , t > 0 ; 1 < x <

is taken for second member functions h(x). Then every choice of n and t

determines the ordered pair of functions

[g(x),h(x) ] = [x-n,e -tx]

Defining the functional as

F ),h(x) : g(x)h(x)

one obtains

F g ),h(x) : x-he -tx dx : En(t )
i i

In this example, F[g(x),h(x)] : F[h(x),g(x)] but this condition is not

required of a functional of two arguments. Also in this example, the inter-

vals [a,b] and [c,d]coincide_ but this is not_ in general_ a requirement.

Usually, the notation for a functional of two arguments is shortened by the

omission of the end points.

When h(x) is a fixed function, say h(x) : ho(x) , the functional F

assigns a number to each function which may be chosen as a first member for

the ordered pair. Hence F[g(x),ho(x ) ] is a functional with one argument.

This restriction of F[g(x),h(x)] to the pairs [g(x),ho(x )] is indicated by

the notat ion

F[g(x),h(X)]h:h o

When it is indicated that h(x) is a fixed function but the function is not

explicitly named, the symbol F[g(x),h(x)] h is used.

Since F[g(x)_h(x)] h is a functional with one argument, its derivative
is defined in precisely the same manner as the derivative of Fig(x)].

F'[go(x),h(x);xl] h = lim

_o II c_(x)11
II c_(x) llx_

F[go(X ) + £p(x),h(x) ]h - F[ go(X),h(x) ]h

It is understood that xl is a point in the interval [a,b] where first mem-

ber functions are considered. In keeping with the notation for a partial

12



derivative of a function, the symbol F'[go(x),h(x);xl] h is replaced by

Fg[go(x),h(x);xl]=

Similarly, the functional F[g(x),h(x)]g is a functional with one

argument and its derivative is defined.

FEg(x),ho(x) + c_(x) ]g - F[g(x),ho(x)]g
Fh[g(x),ho(x);xs] = lim

Itch(x) tlx2_O IIc¢(x) ll

Here, x2 is a point in the interval [c_d] where the second member functions

are considered.

The derivatives Fg[go(x),h(x);x l] and Fh[g(x),ho(x);x 2] are the analogs
of the partial derivatives of a function f(u,v) of two variables. The total

differential of f(u,v) is given by

df bf bfdu + dv
au

whereas the actual increment Z_f_ which corresponds to increments Au = du

and Av = dv_ is

= f(u+ Au,v+ Av) - f(u,v)

It is shown by methods of elementary calculus that df differs from g_f by

infinitesimals of higher order than Au and Av. In the next section, a for-

mula for the total differential dz of a functional with two arguments will

be developed. It will be shown that dz differs from the actual increment

in the functional Az by infinitesimals of higher order than c when the

incremental functions are c_(x) and c_(x).

Differential of a Functional With One or Two Arguments

A functional z =G[u(_)] with one argument will now be considered.

is assumed that G has a derivative at every point of the interval (a,b).

Let u(_) be given an increment du(_) = c_({), where now c_({) may be

allowed to be different from zero over the entire interval (a,b). There

results an increment Z_z defined by

= GEu(_) + c_(_)] - S[u(_)]

An expression for the differential

dz _ Ekz

It

will now be developed with the following two properties:

(i) The differential dz will differ from Az by infinitesimals

of higher order than ¢.

(2) The differential dz will be a linear functional of the

incremental function du(_) = c_(_).

That it is possible to fulfill these specifications is a consequence of the

assumption that the functional G has a derivative at every point.
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The incremental function du(_) = e_(_) can be written as the sum of

functions _i(_) (i = i, 2, . n) where each 9i({) vanishes outside a

small interval. In order to construct the functions _(_), the interval

(a,b) is subdivided into n subintervals by the (n + i) points

a = Co, cl, c2, , Cn_i, cn = b. Then the functions _i(_) are defined

by

_i(_): _({), _ (ci-l,ci]

: 0, _i(°i-_,ci]

Then, by definition;

n

Vl
i:l

at every point in [a,b] except { : a, where Ti(_) is not defined. This

anomaly will have no effect on the results to be obtained because it will not

affect Ifci;i(_)!I•

I
i

I
I

/

/

\

Z
/

!

9(() /
/

/

o c. c. b
I-I I

Figure 6.- The segment q_i({).

Each of the functions _i(_ ) is

zero everywhere except in an interval

(ci_i,ci) which can be made arbitrar-

ily small by the insertion of more

points to subdivide the interval [a,b]

into more subintervals. Inside the

subinterval (ci-i,ci) , r_i(_) can be

thought of as a segment of the curve

_(_), as shown in figure 6.

If the function c<pi(_) is thought
of as an incremental function by

itself, there corresponds an increment

Aiz:

_z : o[u({)+ c<_i(_)]- o[u({)]

is assumed to possess a derivative.

It is possible to estimate the magni-

tude of _hiz since the functional G

By definition of G',

o'[u({);xz]:
£_iz

lim
c_o ilc_i(_)II

_.iX_O

when _ix : (ci - Ci_m) _ 0 in such a way that Aix always contains the

point x z. Consequently, when both lel and (ci - ci_ i) are small, it is pos-

sible to write

14



where

lim _(x!) = 0

6->0

Aix_o

The mean value theorem for integrals can be used to obtain

ci

II e_i(_)tl : Icl _ci-m_i(x)ax = lel_i(x2)aix

where x 2 is a point interior to the interval (ci_z,ci). Substitution of the

expression on the right for IIe_i(_)]l gives, for a positive c,

c i

aiz = co'[u(_);_]_,i(x2)aix+ en(_) _ci-= _(_)_

are points interior to the interval (ci_l,e i) andwhere both X 1 and x 2

wh ere

As might be anticipated, this expression for the increment

to the incremental function c_i(_ ) will be used to find the increment

which corresponds to the function

n

c_(_) = e z _i(_)
1

Az

lim _(xl) : 0

Aix_o

z_2z corresponding

When O[u(_) ] is a linear functional, the expressions for both Aiz and

are relatively simple_ for when G is linear_

Z_iz : G[u({) + cmi(_)] - G[u({)]

= a[u(_)]+ _o[_.i(_)]- O[u(_)]

= co[_i(_) ]

and likewise

n_ = o[_(_) + cm(_)] - a[u(_)]

= _o[_(_)] = _[_ _i(_)]
1

n

i

This shows that when the functional G is linear_

n

az = _ aiz
i =I

15



However, it will not be assumed that the functional G is linear_ but

instead a less restrictive assumption will be made. It is assumed that

Az : lim E Aiz

llmixll_o i

where IIAix II is the largest of the subintervals Ai x. This assumption

implies the relation

{ cilim E eG'[u({);xil]qoi(xi2)Aix + E e_(xiz) _Ic qo(x)
Ilmixll-_o i i ±-_

where xil and xia are points interior to the interval (ci_l,ci). When both
sides of this equation are divided by m and the limit of the first sum on

the right is taken_there results

I ISix]l-_o i _l-1

Since for each i,

iim _(xii ) :

11aix I1_o

lim

C -_0

II aix I1_o

c i

oFoi_ =o

it follows that

lim

C-'O

114_xll _o

ci

i ci -m

Therefore

lim L_z
de

b
=f

a

Consequently, the differential dz which corresponds to the incremental

function du(_) = e_(_) is defined to be

dz = J_ a,[u({);x]cm(_)_

From its derivation; it is seen that

__dz= limA Z
6

C_O

(4)
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so that dz differs from L_ by infinitesimals of higher order than _, and

hence satisfies the first of the two requirements placed on it. It also

satisfies the linear requirement

dz[c=m_(_) + _#_2(=)] = ci dz[%_(=)] + c2 dz[_,2(x)]

since

a [u(_);_] zm_(=) + c_(x _ _ _[ab _'[u(_);x],mz(x)_

_b+ c_ o,[u(_)_×]m2(_)a_
a

Consider now a functional w = F u ,v(_) with two arguments, and
e

assume that both derivatives Fu[uo(_),v(_);xz] and Fv[u(_),Vo(g) ;x2] exist

for every xz and x 2 satisfying the inequalities a < xz < b and c < x2 < d.

When u(_) is given an increment du(_) = cz_(_) while v(_) is left

unchanged_ by extension of the above development the differential dw is

dw[ c_p(_ ) ,0 ] : _ Fu[ _(_), v(_ ) ; x] _(x) _

Likewise_ when u(_) is unchanged and v([) is given an increment

dv(_) = c2_(_), dw is

;X]C2_'(X) dx

When the functions u(_) and v([) are mutually independent, it follows that

dw[_(_),%_(_)] = aw[_(_),o] + dw[O,_(_)]

Thus, the differential of a functional with two mutually independent

arguments is given by

d_[_(_),_2_(_)] = _ j"a_ _u[U(_),_(_);x]_'(x)a_

+ _ [jFv[u(_),v(_)_x]_(x)_ (5)

Integration of Step Responses

The preceding discussion provides the framework for the desired

generalizations. Suppose that F is a variable' whose value at a fixed point

t is a functional of some physical quantity u(_) defined in the interval

0 _ _ _ t; that is,

17



1F(t) = G u(_)

O

In most p_sical problems, the argument function u(_) is of such a nature

that it can be built up as the limit of a sequence of step functions. For

this reason it is desir_le to develop an expression for _(t) when du(_)

is a step function. Consequent_, the functions u(_,T) and _(_,T) are

defined as follows (cf. fig. 7):

\ "-.

o

=

i"
,_¢¢,,-_ +_c_,_-I _(_,r) = O

___.__ Z_.__
\

\u(,_,r) : u( 1

Figure 7.- Illustration of u(_,T), u(_), cp(_,T).

, 0<__ <T

, T <__ St

, O<___<T

When u(_,T) is given an increment

du(_,T) = c_(_,T)_ the resulting incre-

ment in F at the point t is

_LF[E_(_ ,T);t] = c /_ G'[u(_,T);xJcp(x,T)dx

: c F]
ul

The nature of the integral

t

reveals the factors which influence the increment in F at the point t.

Since the integrand G' is a functional of u(_T)_ it shows the increment

in F to be a functional of u(_,T). Thus the increment in F depends on

all the values taken by u({,T) in the entire interval 0 _ _ _ t; but these

values are all determined by the values taken by u({) in the subinterval

0 _ _ _ T. Consequently_ the increment in F at the point t is a func-

tional of u({) in the subinterval [O,T]; that is, it depends on the history

of u(_) in the period preceding the jump at _ = T. Since an integral is a

function of its limits, it is clear that the increment in F at t is a

function of t and T as well as a functional of u(_). This function-

functional dependence is expressed by the notation

Fu[U(_);t,_] = ;$ G'[u(_,_);x]dx (6)

The subscript u is appended to emphasize that this integral is an extension

of the notion of a derivative of a function. Indeed, equation (4) shows that

Fu[u(_);t,_] = lira ZkF
G

_-*O
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where AF is the increment in F corresponding to an increment du(_).

When this equation is compared with equation (i), that is,

AC_n

Cmc_(t - T) = lira _- (t T)

the analogy is revealed between Fu[u(_);t,T] and the indicial response

appropriate to the linear case. Because cFu[u(_);t,_] is the differential

increment in F at the point t which corresponds to a step increment in

u(_) at the point T, and because Fu[u(_);t,T] is analogous to the indicial

response in the linear case, Fu will be called the generalized indicial

response.

for

The generalized indicial response can be used to obtain an integral form

F(t) = G[u(_)]

As in the linear case, the function u(_), considered in the interval

[0,T+AT], is approximated by u(_) in the interval [0,T] plus a step of

height _ = (Au/AT)AT somewhere in the interval [T,T+AT]. As ._T _ 0,

c _ (du/dT) dT so that dr(t) _ Fu[u(_)_t,T](du/dT)dT. Consequently,

dll

or

dLl

F(t) = F(O) + j_ot Fu[U([);t,T] _-_ dT (-T)

The integral on the right reduces to the familiar superposition integral when

F and u are connected by a linear differential equation. Hence_ the integral

on the right of equation (7) is a generalization of the superposition

integral.

An expression of similar character can be obtained when

[ t (i]
o

Reference to equation (5) shows

: + Gv[ u(_ ),v(_ );x]'$'(x)dx

(8)

When v({) is a fixed function and u([) is given a step increment of height

ci at [ = T, the response in F at point t is

t

l?



Likewise, v_en u(_) is a fixed function and v(_) is given a step increment

of height c2 at _ = T, the response in F at point t is

and

dF[O,_21_(_,T);t ] = c2 _t Gv[u(_),v({)jx]d x

Accordingly, the expressions

=

Fv[u(_),v(_)jt,T ] = _t Gv[u(_),v(_);x]d x

are defined. Each is an indicial response. That is, Fu[U(_),v(_)jt,T] is

the response in F at the point t to a unit step in u(_) at _ = T when

v(_) is a fixed function. The response Fv[u(_),v(_);t,T] is described

similarly.

Consider now the response in F at _ = t to steps of height ¢i and

_2 made in u(_) and v(_), respectively, at _ = T. Equation (8) and the

notation just adopted give

dF = ciFu[u(_),v(_)jt,T] + c2Fv[u(_),v(_);t,T]

As before, u(_) and v(_) are approximated in the interval [T,T+AT] by steps

of height cl = (Au/AT)AT and ¢2 = (Av/AT)AT, respectively. Again, as

AT _ 0, cl _ (du/dT)dT and E2 _ (dv/dT)dT so that

du dv

Therefore_

du t dv
jt elf = _[ot Fu[u(_),v(_);t,T] _-_TdT + _o Fv[u(_)'v(_);t'T] dT dT

and, consequently,

du t dv
F(t) = F(O) + _t Fu[U(_),v(_);t,T ] dT dT+ _o Fv[U(_)'v(_);t'T] d7 dT

(9)

Equation (9) is the main result of this section. It reveals the

structure of a functional with two argument functions in terms of generalized

superposition integrals. In the next section, this result will be used in

aerodynamic applications.
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AERODYNAMICAPPLICATIONS

General Formulation for Aerodynamic Applications

It is clear that the preceding results provide the necessary
mathematical framework for the proposed reformulation of the aerodynamic
pitching-moment coefficient Cm(t). Equation (6), which is free of depend-
ence on a linearity assumption, generalizes the notion of indicial functions.
Equation (7) is the corresponding generalization of the superposition inte-
gral. The relevance of these results to the aerodynamic problem under con-
sideration is immediately evident when F, u, and v in equation (9) are
replaced, respectively, by Cm, _, and q. The aerodynamic pitching-moment
coefficient at time t is _ritten in the general form

d  (T)aTCm(t) = Cm(0) + _tO Cm_[C_(_),q(_);t,T]

d
+ _t° Cmq[_(_),q(_);t,T] _ q(T)dT (io)

where Cm_[_(_),q(_);t,T] and Cmq[_(_),q(_);t,T] are the generalized indicial
responses, defined by direct analogy to the definitions of Fu[u(_),v(_);t,T]

and Fv[U(_),v(_);t,T] given in the preceding section.

To attach a physical meaning to the definition of the indicial responses

in terms appropriate to aerodynamic applications, the process of forming them

will now be described. Two motions are considered: First, beginning at

= 0, the aircraft is caused to undergo the motion under study, _(_), q(_).

At a certain time T, the motion is constrained in such a way that the values

of the flow variables existent at time T (i.e., _(T), q(T)) remain constant

thereafter. The pitching moment corresponding to this maneuver is measured

at a time t_ subsequent to T. Second_ the aircraft is caused to execute

precisely the same motion_ beginning at _ = 0 and constrained in the same

way at _ = T_ except that at the latter time, one of the variables _ or q

is given an incremental step Z_ or Aq over its value at _ = T. Hence_ if

it is _ which is given an increment _ the values of the flow variables

for all times subsequent to T are _(T) + Lk_, q(T). The pitching moment is

again measured at time t. The difference between the two measurements is

divided by the incremental step _ or _q; the limit of this ratio as the

magnitude of the step approaches zero is called the indicial pitching-moment

response at time t per unit step at time T of one of the two flow vari-

ables _ or q. In the most general case, the indicial response depends not

only on the levels _(T), q(T) at which the step is made, but also on all the

past values of _ and q; in the most general case, then_ the indicial

response is itself a functional.

It will be noted that the form of equation (i0) is remarkably similar to

the exact linear form, equation (2). The resemblance is deceptive, however,

for the redefined indicial responses are_ in principle_ far more complicated

than their linear counterparts. Thus_ for example_ with the indicial
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responses dependent on the levels of _ and q at which the steps are made_
each successive response will be different from the last. In addition, the
formulation allows for the possibility that the indicial responses maybe
functionals themselves, dependent on the whole past of _ and q. Problems in
which the latter condition must be retained maybe so difficult as to lie
outside the scope of the formulation's practicability. Fortunately, in a
great manyaerodynamic applications, the condition need not be retained_ for
it can be argued that under ordinary circumstances the indicial responses
should have at most only a limited dependenceon the past. The argument is
presented in the next section.

Simplification of the General Formulation

In its full generality, equation (I0) mayprovide at least a framework
for the treatment of a wide variety of nonlinear aerodynamic problems, inciud-
ing, for example, those involving hysteresis phenomena. Here_ however, the
scope of equation (i0) will be narrowed to a smaller class of problems,
namely_ that for which the indicial responses can be assumedto have only a
limited dependenceon the past. To demonstrate the nature of this assumption,
it is convenient to adopt the two-dimensional wing as illustration. The con-
clusion_ however; will apply to more general categories of wings and bodies.

Let the wing moveaway from a coordinate system whose origin is fixed in
space at the center of gravity at a time _ = 0, marking the beginning of a
maneuver. The distance traveled by the center of gravity along the flight

Maximum projection / (_//
of leading edge., y

_// o(_),qI_,

a(:), q(_) ,_)z
._ ,_ Maximum project,on

_"-_ _Y_"of trailing edge

"'-Trace of center of

gravity, s=-X_

Figure 8.- Formation of indicial response.

s

path is measured by a coordinate s.

Since the center of gravity moves at

constant velocity Vo, the trace of

its path, plotted against time _, is

a straight line. This is shown in

figure 8, where the maximum projections

of the leading and trailing edges are

also sho_, parallel to the trace of

the center of gravity.

Consider the two maneuvers

prescribed for the formation of an

indicial response. In both_ the wing

undergoes the motion under study _(_),

q(_) over the time interval zero to T.

For the first maneuver, in which the

motion is constrained at T so that the values of _ and q existent at T

remain constant thereafter_ consider a point s on the wing at a time t

subsequent to T. The loading at the point is influenced by all disturbances

which originate in the past and are able to reach the point at the same time

t. Each disturbance is propagated at the local speed of sound, and hence, in

a plot such as figure 8_ the zone of its influence is bounded by projections

of the rays of an approximately conic surface whose origin is the point of

the disturbance. 0nly disturbances whose cones include the point (s,t) in

22



question can influence the loading at the point. Hence_a certain conic
surface, directed backward in time from the point (s,t)_ will include within
it all points in past time whose disturbances are able to influence the load-
ing at s at time t. Sucha cone is shownin figure 8 for a case where the
flight speed Vo is supersonic. It will be noted that both rays of the cone
intersect the leading edge; since at supersonic speed, there are no disturb-
ances in the region ahead of the shock wave which emanatesfrom the leading
edg% it is clear that the zone of disturbances enclosed by the cone is
boundedin time and space. Hence_for supersonic speed at least, it is
already evident that the past events which can influence the indicial loading
at time t are limited to those occurring within a definite time interval of
the most recent past.

Nowconsider the samepoint s at time t during the second of the two
motions. Since the motions prior to T are identical_ the propagation of a
disturbance originating prior to T at a point (sl,_1) will be precisely the
sameover the time interval T - _l as that of its counterpart during the
first motion. Hence, the disturbance will arrive at the samepoint at time
T and in the samecondition. Then, if it arrives at the point s at a dif-
ferent time or in a different condition than its counterpart_ the modification
must be due to its interaction with disturbances which originate after time
T. NOWthe latter disturbances themselves differ between the two motions by
terms of 0(_) or 0(Aq). Then it is reasonable to assumethat interactions

between disturbances normally will differ in the two cases by terms in As

or Aq of order higher than the first. The assumption is_ then_ that the

influence on the loading at point s of a disturbance which originates at a

time prior to T during the second maneuver will be_ within terms of

0((_) 2) or 0((£q)2), identical to that of its counterpart during the first

maneuver. Therefor% with terms neglected of order higher than the first in

or _q_ the influence of events prior to T will cancel in the formation

of the indicial response. It is believed that the assumption should hold so

long as the incremental change As or Aq does not introduce a radical

change in the nature of the flow field_ such as a new or greatly altered

shock wave or an abrupt shift in the pattern of flow separation.

The above assumption has several important consequences. First_ since

within the assumption the indicial response is insensitive to the motion

prior to T, that motion may be assigned as desired. It is convenient to

specify that it be invariant with time; that is, for all _ < T_ let it be

specified that _ = _(T), q = q(T). The indicial response, now dependent on

the parameters _(T), q(T), rather than on the functions _(_), q(_), may be

considered a function in the ordinary sense rather than a functional. To

indicate this specifically; the following notation is adopted for the indicial

functions

Cm_[_(_),q(_)it,T] = Cm_(t,T;_(T),q(T)) ]
(ii)

JCmq[_({),q(_);t,T] = Cmq(t,r;a(T),q(T))

Although equations (ii) have been obtained under the assumption that events

prior to T do not influence the indicia! response, the assignation of a
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time-invariant past to the response renders the assumption substantially less

restrictive. Thus; in certain cases, even if events prior to T do in fact

influence the indicial response, equations (ii) may still apply approximately.

This will be true_ for example, when the flight speed is supersonic and the

motion under consideration is slowly varying. The first of these provisions

ensures that only a limited interval of the most recent past can affect the

indicial response, while the second ensures that_ over this limited interval,

the values of _ and q change only slightly. Hence, so far as the indicial

response is cognizant of the past motion, the past motion is essentially

time-invariant.

A second consequence of the assumption (and not an additional assumption)

can be deduced when it is recalled that the flight speed and atmospheric den-

sity also remain invariant throughout the motion. It is easy to show that the

indicial response for given values of the parameters _(T) and q(T) will be

the same at a given time subsequent to the step no matter when the step

occurs. This means that the response cannot be a function of t and T sepa-

rately, but must be a function only of elapsed time subsequent to the step,

that is, a function of the time difference t - T. Let it be noted, however,

that this assertion holds only by virtue of the prescribed constancy of

flight conditions along the flight path. It would not hold, for example_ for

accelerated motions, or for atmospheric entry motions where the atmospheric

density must be considered a variable.

Finally, then, a much more specific form of equation (i0) may be

written_ which seems capable of embracing a fairly broad range of aerodynamic

problems. It is

d _(_) aT
Cm(t) = Cm(0) + _ Cmc_(9- T;_(T),q(T)) _-_

d

+ q( )dT (12)

Although the form of equation (12) represents a great simplification over that

of equation (I0), it is worth noting that the equation still includes the

full linear form (eq. (2)) as a special case.

Application to Dynamic Stability Studies

Equation (12) is now applied to the study of aircraft dynamic stability.

The rigid-body motions of aircraft are normally oscillatory; and moreover_

the oscillations are generally of very low frequency. Several analytical

benefits accrue from the latter fact: First, since the motions are slowly

varying, the assumptions underlying equation (12) are particularly well-

grounded in this application. Second, equation (12) can be further simpli-

fied. The simplificatio_ which in effect reduces equation(12) to an equation

correct to the first order in frequency, parallels that realized in the

linear case in the application of equation (2) to stability studies (ref. 4).
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Equation (12) is first rearranged to give a more convenient form. It is

evident from physical considerations that the indicial functions will approach

or reach steady-state values with increasing values of the argument t - T.

To indicate this_ the following identities are introduced (the notation

parallels that of ref. 4):

Cm_t-T;_(T),q(T)) = Cm_;_(T),q(T)) -Fs(t-T;_(T),q(T)) ] (13)

Cmq(t-T;_(T),q(T)) = Cmq(_;_(T),q(T)) -F4(t-T;_(T),q(T)) J
where

Cmc_(_; c_(T), q(T) )

q(T))

rate of change with _ of the pitching-moment coefficient

that would be measured in a steady flow_ evaluated at

the instantaneous value _(T) with q fixed at the

instantaneous value q(T)

rate of change with q of the pitching-moment coefficient

that would be measured in a steady flow_ evaluated at

the instantaneous value q(T) with _ fixed at the

instantaneous value _(T)

The functions Fs and F_ are termed deficiency functions; they of course

tend to vanish with increasing values of the argument t - T. When equa-

tions (13) are inserted in equation (12), the terms involving the stea<_-

state parameters form a perfect differential which can be immediately

integrated. Equation (12) becomes

Cm(t) = Cm(_;_(t),q(t)) - _ Fs(t-T;_(T),q(T)) d_(T)dT

t F _ d
- _0 4(t T;C_(T),q(T)) _-_ q(T)dT (14)

where

Cm(_]_(t),q(t)) total pitching-moment coefficient that would be measured

in a steady flow with _ fixed at the instantaneous

value _(t) and q fixed at the instantaneous value

q(t)

Equation (14) is a form of equation (12) particularly amenable to

approximation. It is desired to reduce the equation to one that is correct

to the first order in frequency. Let it be assumed for illustration that the

angles _ and e are essentially harmonic functions_ that isj

Then it is clear that_ since

first order in frequency _.

and powers of

in frequency.

_ _o ei_t

_ eo ei_t

q is proportional to 8, q itself will be of

Hence_ q will be small for all values of time_

q higher than the first _iI be of second and higher orders

Therefor% for any given values of t or T, it is permissible
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to expand the terms in equation (14) in a Taylor series about q = 0 and to

discard terms containing powers of q higher than the first. It is clear

also that terms in _ and _q likewise may be discarded as they will be of

second order in frequency. After the expansion is carried out and terms are

discarded as described_ the result is

Cm(t ) Cm(_;_(t),0) + q(t)Cmq(_;_(t) 0) -_F3(t-
d

T;_(T) ,0) _(T) dT= ,

(15)

Definitions of Cm(_;_(t),0) and Cmq(_;_(t),0) follow from those given

previously with the substitution q_t) = 0. The first two terms are clearly

the nonlinear counterparts of the terms _Cm_(_) and qCmq(_) that appear in
Clinear analyses based on the stability derivative con epZ. It is to be

expected, therefore_ that the integral_ when also reduced to the first order

in frequency, should be the nonlinear counterpart of the term (_Z/Vo)Cm_.

This reduction is considered next.

The reduction of the integral is most conveniently demonstrated when the

assumption of a harmonic variation in _ is retained. It should be under-

stood_ however, that the argument does not hinge on this assumption. With

the change in variable t - T = TI_ the integral becomes

I = _ FS(TI;_(t - T1),0)i_oei_(t-Tl)dTl

which may be rewritten

I = a(t) _ FS(TI;_(t - _l),0)e -i_T1 dT1

Now for supersonic speed_ the deficiency function vanishes after a finite

and relatively short interval of time Tz has elapsed (the interval dimin-

ishes with increasing speed). For subsonic speed, in theory the deficiency

function approaches zero only asymptotically as TI _ _ but it is reasonable

to assume that in practice the difference from zero soon would be unmeasur-

able; hence, here also, the deficiency function may be said to vanish after a

relatively short period of time. Let the value of Tl at which the defi-

ciency function essentially vanishes be ta, and consider events at a time t

sufficiently removed from the start of the motion that t >> ta. Then the

upper limit in equation (17) may be replaced by ta, whereupon it is clear

that with TI bounded and _ small, the harmonic function may be expanded

in powers of _. Since _ is itself of first order in _, however, only the

first term in the expansion, unity_ contributes within the order of the

approximation. Moreover, with respect to the parameter _(t - TI), a further

simplification can be realized when the condition t >> ta is invoked, for

then _(t - Tl) = _(t). The integral reduces to

(16)

(17)

Vo

Hence_ just as in the linear case (cf. ref. 4), to the first order in

(18)
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frequency the integral is essentially the area of the deficiency function,

now, however, evaluated at and dependent on the particular value of angle of

attack _(t) under consideration. Further_ it can be demonstrated that the

analogy shown to exist in the linear case between the area of the deficiency

function and the stability derivative Cm& (ref. 4) carries over as well (on
condition that t >> ta). The form of equation (12) appropriate to dynamic

stability analyses is then

Z Cm&(_(t) )
Cm(t) = Cm(_;_(t),0) + q(t)Cmq(_;_(t),0) + &(t) _o

wh ere

V o ta

Cmd_(c_(t)) = - T- _0 Fs(Tz;c_(t)'O)dTz

(19)

(2o)

Equation (19) may be given a more uniform appearance by the adoption of a

dimensionless measure 9 as the independent variable in place of time t.

Let

Vot

- Z _ number of lengths traveled in time t

VOTZ

9z : Z _ number of lengths traveled in time Tl

Vot a

da =, _ , number of lengths traveled in time required

for deficiency function to vanish

(21)

Equation (19) becomes

Cm(_) = Cm(_;_(_),O) + q(_)Cmq(_;_(_),O) + _'(_)Cma(_(_) ) (22)

with

_a

cmg ( ) ) = - o[o F3(_z;_(_),O)d_z (23)

Of the three coefficients in equation (22), the first, of course, is the

familiar static pitching-moment coefficient due to angle of attack. Since it

is of fundamental importance in aircraft design, it has been studied exten-

sively. Consequently, a large body of relevant experimental results exists

which may be called on to define the coefficient in particular cases. On the

contrary, no such body of results exists for the remaining two coefficients.

It is recalled, however, that the two terms arise as the result of small

perturbations in the flow variables from a possibly large but fixed angle of

attack. This fact suggests the possibility that the terms may be obtainable,

at least in certain cases, from theoretical calculations. That is, it may be

possible to adapt the methods of small-disturbance theory to this problem,

where, it is anticipated, the perturbation equations will have coefficients

dependent on the basic flow field corresponding to the fixed angle of attack.
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Just as in the linear case, solutions for Cmq may be derived from a stea_ r-

state equation, whereas solutions for Cm_ will have to be derived from a

time-dependent equation. The specific problems which must be solved are

characterized by the motions illustrated in figure 9.

/
cE= const T _l_If

k"Ars--,--0

"" Flight path

/voW7"

8 a = const

q=_ Z = const---- 0
%

Vo

ght path

(a) Motion for F3(_$_I;_,0 ) . (b) Motion for Cmq(_;_,0).

Figure 9-- Definitive motions for calculation of stability coefficients.

It remains to discuss the significance of the integral form for Cm_,
equation (23). This requires a short preliminary discussion of the indicial

function_ and to this endj the two-dimensional wing is again used as illustra-

tion; again_ however_ the results will have more general bearing. Consider

_the boundary conditions corresponding to the motion illustrated in figure 9(a)

, Figure i0.- Boundary condition _ for the

.. indicial loading.

/ for a supersonic flight speed. As

shown in figure i0, for 91 < 0 the

I_) angle of attack is constant at _(_).

_. A step in _ occurs at _l = 0 so
_T that for _'i _ O, the angle of attack

is _(_) + _. Due to the impulsive

change in _, the loading on the wing

. at _l = 0 likewise undergoes a sudden

change. The physical situation at

this instant corresponds essentially

to that described by piston theory

(cf., e.g,, ref. 6), and indeed, this

theory should yield a reasonably accu-

rate estimate of the initial change in

loading. Also at _l = 0_ the sudden

change in flow conditions causes a

sound wave to propagate from the lead-

ing edge and, as shown in figure I0,

the wave divides the wing into three

distinct regions. Points in region (i)
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have not yet been made aware of the changed conditions at the leading edge by

the arrival of the sound wave, and hence the loading in this region persists

essentially unchanged from that existent at @z = O. This loading gradually

disappears as the propagation of the sound wave announces the new conditions

at the leading edge to increasing portions of the wing_ and it disappears com-

pletely at _l = db. Region (3) sets off that portion of the wing which has

outrun the wave and which has therefore already acquired the steady-state

loading corresponding to the new angle of attack. The entire wing attains

this state at _z = da" Region (2) is an intermediate regime, under the

direct influence Of the sound wave. In accordance with the above behavior,

there is reason to break the indicial pitching-moment function into two sepa-

rate contributions_ as shown in figure ii. The first variation represents the
pitching-moment Contribution of the

integrated loading in region (i)_

accordingly, it begins with the value

Cm_(O;_(_),O) and vanishes at _z = db"

The second variation reflects the lumped

contributions of regions (2) and (3); in

conformity with the loading_ its initial

value is zero, while its end value,

attained at _z = _a, is Cm_(_;_(_),O).
The sum of the two variations is the

indicial pitching-moment function

Cm_(_z;_(_),O). In order to exhibit the
end values of the two contributions

explicitly, the normalized functions

fz and f2 are introduced as shown in

the figure_ whereupon the indicial

response is written in the form

C m (O,a(_'),O) fj(_v Q(_D/ e

-'" C m (_o_=('.t,), O)

('#) O)fz_'# _ c,('# )

°'b _0 '#I

Figure ii.- Breakdown of indicial response.

Cmm(_z;m(_),O) = Cmm(Ojm(_),O)fz(_z;_(_)) + Cmm(_;m(_),O)f2(Tzjm(_))

(24)

where fz and f2 vary within the limits zero and unity. Hence, the

deficiency function F3 is

F3(_z;_(_),O) = Cm_(_;_(_),O)[1 -

so that the integgal for Cm& takes the form

db

Cm_(a,(qo)) = Cma(O;cc(q) ),0) 70 fz(floz;cc(flo))dT1

_a

- I1 - (26)

Equation (26) clearly shows the strong dependence of Cm& on the steady-state

parameter Cm_(_;_(_),O). Further, the sign relation evidenced in
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equation (26) should be noted. Since the integral involving f2 normally

will be positive, the equation indicates that as Cm_(_;_(_),0 ) becomes more

negative (i.e., statically more stable), Cm_ becomes more positive (i.e.,

dynamically more unstable). This has been o_bserved to be the case in a num-

ber of experimental investigations (cf. ref. 7 and references cited therein).

Since fl and f2 are normalized functions, cases are anticipated in

which their dependence on _ will not be significant. In such cases, the

integrals in equation (26) become constants. When it can be further assumed

that CmN(O;_(_),O ) is also independent of _, the expression for Cm& takes

the simple form

Cm%(<_.(_))) : A + BCmcc(oo;c_(CD),O) (27)

A version of this result, applicable to the case of small harmonic oscilla-

tions about a mean value of _, was first presented in reference 7. Equa-

tion (27) is the more general form, however, within the same assumptions.

The most general form of the relation is, of course, equation (26).

Implications for Experiments

The increasing appearance of nonlinear aerodynamic phenomena has been of

particular concern to experimenters. A great many facilities and techniques

have been developed for extracting stability coefficients from Qvnamical data

expressly on the assumption that the motions were governed by linear differ-

ential equations having constant coefficients. The widely different methods

which have been developed on this assumption in principle yield identical

results when the assumption is valid, but there is no such assurance when it

is not. In the latter case, a different result may be obtained from each

facility and from each method of data reduction, each result reflecting a

particular facet and usually some linear "equivalent" of the underlying non-

linear phenomenon. The analyst who must use these results in a particular

application is often faced with many choices; he can be assured of the valid-

ity of his choice only if the motion he anticipates in his application bears
some resemblance to the motion from which the results chosen were extracted.

Obvious!y_ this situation imposes a severe limitation on the usefulness of

wind-tunnel measurements of stability coefficients.

The formulation presented in the preceding section may be addressed to

this problem in two ways: first, with regard to a particular facility and

model, to establish the form of the equation governing the motion, and second,

with regard to results from various facilities and an identical model, to

seek correlations between the results which might widen the range of motions

for which the results could be made to apply interchangeably. Consider the

first of these _uses for the case of wind-tunnel dynamical experiments. As is

usual in such experiments_ let the model be pinned at its center of gravity

to a fixed point_ so that it executes purely rotary motions about the center

o_g_avity. Inthis case_he ang!e of pitch e and the angle of attack

are the same. !CoHsequently/:with the dimensionless measure _ as independent

3O



variable, q(_) = _'(@).

where

Then the most general form of equation (22) is

Cm( )= +

= +

(28)

The dependence on m alone of the damping coefficient h should be noted.

That it is independent of _'(_) or higher derivatives of _ is a necessary

and consistent consequence of the restriction that the motion be slowly vary-

ing. Further specifications of the form of h and g will depend on the par-

ticular model under study. One such specification of Cm. already has been

presented as equation (27). A similar form for h may b_specified under a

number of different circumstances. Perhaps the most general of these occurs

when it is known that g is adequately represented by the first two terms of

an expansion in odd powers of _. Since the boundary conditions for the

motion from which Cm_(_;_(cp),0 ) is derived are similar to those for

Cm_(_(_),O), it q iis very reasonable to assume that Cnkl, like Cm_, wil
show no more than an even quadratic dependence on _. Further, reference 6

shows that for many cases Cm_(0;_(9),O ) will be expressible as a quadratic
in _. Under similar conditions, the functions fz and f2 in equation (26),

being normalized, may be assumed to be essentially independent of _. Then

h and g take the forms

h = ho + h2_ 2 ]

Jg =_(go + g2_2)

(29)

Alternatively, therefore, h is expressible in the form previously exhibited

as a particularly simple one for Cm& (eq. (27)), namely

h = Cmq+ = C + (30)

Since a limited range of _ normally will exist over which g can be

expressed as a cubic, equation (30) would appear to have general applicabil-

ity at least in that range. For much wider ranges of _, this simple relation

probably will not hold. The generalization of the above result leads rather

to a prediction that if g is expressible as an odd polynomial in _ of

degree n_ then h will be an even polynomial in _ of degree n - i.

The second of the two uses_ correlation, is now illustrated for a model

whose coefficients are assumed to be of the form given by equations (29) and
(30). Two widely used experimental methods are considered. The first is
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illustrated in figure 12. The sting is brought to a fixed meanangle of

_m

I
V o

Figure 12.- Forced oscillations about a mean angle of attack

attack c_m and the model is forced to oscillate periodically about am with

a small amplitude _o. The work required to drive the model (in excess of a

known wind-off tare) is measured and equated to the work done by the aerody-

namic damping moment. Thus

_/k

work - W = qoSZ _o a'2(Q)[Cmq + CmA ]d9 (31)cycle

where

k
_Z

V o
reduced frequency

Let _ be a harmonic function about the mean angle c%n; that is_

m(_) =_m + mo sin k9 (32)

In the linear case, where the damping coefficient is a constant_ integration

of equation (31) yields

W = Cmq + (33)
qoS1_o_k Cmg

Thus_ the damping coefficient is obtained in terms of measurable quantities.

Now let the damping coefficient be nonlinear and of the form given by equa-

tion (30). Equation (30) is substituted in (31) and Cm_(_;_,O ) is expanded

in a power series about am. The following shortened notation is adopted in

the expansion.

_m) _

Cm_(_;_(_),O ) = Cm'(_;C%n ) + (_ - ct,m)Cm"(_;c_m) + - C_,(_;_m) +2!

(34)
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Whenequation (32) is substituted in (34), the integrations can be carried
out. Forming the ratio indicated in equation (33) then yields an "effective"
damping coefficient

W - ( + CmA)
qoSZ_o2_k Cmq e

_°2 Cm'"(_;_m) + ' (35)
: C + D m'(_;c%n) + -_-- • •

Comparison of equation (35) with equation (30) reveals the significance of

the bracketed term. Just as the measured damping coefficient is an

"effective" value of Cmq + Cm., the bracketed quantity is an effectiwe value

of the static pitching-moment curve slope Cm_(_;_,O ) . It is, in fact, the

value that would be obtained from frequency measurements were the apparatus

to be tuned to oscillate at its resonant frequency (cf. ref. 8). Hence, equa-

tion (35) can be written as

with

= C + (36)(Cmq + Crm_)e DCm_e

C602 wt_ (oa
Cm_e = Cm' (_;C_m) + --8--Cm ;C_m) + (37)

Let the experiment be repeated for a range of values of am and a given value

of _o. Equation (36) indicates that if the results for (Cmq + Cm_) e are

plotted against Cm_e, a straight line is obtained. Further-the same straight
line is obtained for any other value of so. Hence, in effect, equation (36)

correlates the data. m The zero-intercept affd slope of the line give the

values of C and D, respectively. When these values are inserted in equa-

tion (30), the resulting expression for Cma + Cm: is free of dependence on

the particular method used to measure the damping] it is, in other words,

applicable to any motion satisfying the original restrictions (i.e., purely

longitudinal variations at constant flight speed).

The second method is the well-kno_cn free-oscillation technique. As

shown in figure 13, the model is displaced from zero angle of attack against

°t

°
V o

Figure 13-- Free-oscillation technique.

2A version of this result, applicable under somewhat different circum-

stances, was first present]ed in reference 7 together _rith a qualitative indi-

cation of an experimental confirmation.
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the resistance of a spring, and then released. The resulting free oscillation

is recorded. With the model the same as that considered above, the aerody-

namic pitching-moment coefficients are again given by equations (29) and (30).

The equation of motion, with _ as independent variable, is therefore

2(0o7)_"(_)= (he+ h-o+ h2_2)_'(_)+ (go+ go + g2_)_(_)
(38)

where the damping and restoring-moment coefficients of the spring_ assumed

constant and known, are indicated as K o and g--o. Hence, the characteristic

equation is a combination of Duffing's equation and the Van der Pol equation.

Note that within the latter form the possibility exists of a limit motion.

As this is the interesting case, let it occur. Let

/po S Zs-,,,

"k2I ,]

/0o S _Sh

(39)

and change the dependent variable to

d

c

Equation (38) becomes

_"(_) - e2_,' (_/(1 - x2) + e2?,(1

The change in independent variable

y =eq0

(_o)

f202 )d2e 2 _2 = 0 (4]-)

(42)

and the substitutions

bring equation (41) to

02}e

f2c2

d2e2 = C#

(43)

x"(y)- cx,(y)(l x_) + x(1 - _) : o (44)
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With c > 0, equation (44) indicates that a limit motion will occur. The

amplitude of this motion is approximately henv _ 2. For an initial value

h o greater than 2, the amplitude will converge to 2 and the oscillation will

sustain itself at that amplitude thereafter. For _o < 2, the amplitude will

diverge to the same limit amplitude. An approximate solution which shows

this behavior, adequate for small c, can be obtained by means of the Eryloff-
Bogoliuboff method (ref. 8). The solution is

J_ e-_y I1 - (4/_o_)]
sin ( y - 3 _ l°g I1 + _h°s (eCY - 1)1 + _ }o

(4_)

The envelope of the oscillation is

2
hen v = (46)

Jl - e-_y[1 - (4/×o_)]

which, as described, approaches 2 for y _ _. Since, for large _ _env will

be constant and can be measured from the data_ the relation

2 = ! (_env) (47)
c _

determines the scale factor between X and _ in equation (40). Now return

to the original variable p and rewrite equation (46) as

_nvi-_- - log T °- + c2_
l°g\henv - 4/ ho _

(48)

If the left side is plotted against (p on semilogarithmic paper, a straight

line is obtained whose slope is c2. This determines c, whereupon d is

determinable from equation (47). 3 The constants e and f may be obtained

from measurements of the change in half-period between successive zeros of

the oscillation. The four constants ho_ hs_ go, g2 are then determinable
from equations (39)- When the damping coefficient is written in the form of

equation (30)

Cmq + Cm_ = h o + h2_ s = C + DCm_(_;_(q,),O ) (49)

and Cm_(_;_(p)_O) is inserted from equation (29), the following identities

are obtained:

ho =c+ Dgol (_o)

hs 3g2D J
SThe authors are indebted to _h°. Peter J. Hantle for pointing out this

interpretation of the data.
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Hence, C and D may be calculated. The latter values should be the same as

those obtained in the first experiment.

The above discussion suggests an obvious experiment: Select a model

whose steady-state pitching-moment coefficient Cm(_;_,O ) is known to be

representable as a cubic in _ over a substantial range of angle of attack.

Carry out the two experiments in the manner described above. If the results

for Cmq + Cm_ are expressible in the form of equation (30) and if the
values of C and D agree between the two experiments, this will count both

as a confirmation of the theory and a useful means of widening the applicabil-

ity of the experimental results.

CONCLUDING REMARKS

A theoretical study has been undertaken of nonlinear longitudinal

dynamic stability. The mathematical theory of functionals was adapted to

serve as the framework for a reformulation of the notions of aerodynamic indi-

cial functions and superposition. This led to the derivation of an integral

form for the aerodynamic pitching-moment coefficient which is free of depend-

ence on a linearity assumption. Applications of the results to theoretical

and experimental studies of Qvnamic stability were discussed. An experiment

}_s suggested which would test the theoretical prediction that experimental

results for nonlinear damping coefficients, originally dependent on a partic-

ular method of measurement, could be rendered generally applicable.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., July 9, 1964
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